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We develop a hydrodynamic theory for flows of incompressible blends of flexible polymers and rodlike
nematic polymers (RNPs) or rodlike nematic liquid crystal polymers (RNLCPs) extending the thermodynami-
cal theory of Muratov and E [J. Chem. Phys. 116, 4723 (2002)] for phase separation kinetics of the blend. We
model the flexible polymer molecules in the polymer matrix as Rouse chains and assume the translational
diffusion of the molecules is predominantly through the volume fraction of the flexible polymer and the
molecules of rodlike nematic liquid crystal polymers. We then (i) derive the translational flux for the rodlike
nematic liquid crystal polymers to ensure the incompressibility constraint; (ii) derive the elastic stress tensor,
accounting for the contribution from both the rodlike nematic polymer and the flexible polymer matrix, as well
as the extra elastic body force due to the nonlocal intermolecular potential for long range molecular interaction;
(iii) show that the theory obeys positive entropy production and thereby satisfies the second law of thermody-
namics. By applying the gradient expansion technique on the number density function of RNLCPs, we present
an approximate, weakly nonlocal theory in differential form in which the intermolecular potential is given by
gradients of the number density function of the RNLCP and the volume fraction of the flexible polymer. In the
approximate theory, the elastic stress is augmented by an extra stress tensor due to the spatial convection of the
macroscopic material point and long range interaction, whose divergence yields the analogous extra elastic
body force with respect to the nonlocal intermolecular potential. Finally, we compare the model in steady

simple shear with the Doi theory for bulk monodomains of rodlike nematic polymers.
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I. INTRODUCTION

Blends consisting of flexible polymers with rodlike nem-
atic liquid crystal polymers (RNLCPs) or simply rodlike
nematic polymers have many material applications due to
their potentially ultrahigh modulus and stiffness. Polymer-
dispersed liquid crystals and polymer-stabilized small mol-
ecule liquid crystals have been used in electro-optic devices
such as liquid crystal display devices, light shutters/switches,
and protective goggles [1]. Blends of polymers and rodlike
nematic liquid crystalline polymers often exhibit remarkable
mechanical, electrical and thermal properties making them
ideal high-performance materials in industrial and military
applications [2,3]. Blends are also relatively cheap to make.

Given the promising applications of blends of flexible
polymers and rodlike nematic liquid crystalline polymers, a
thorough understanding of their mesophase dynamics, mor-
phology development and mesoscopic structure evolution,
and the full spectrum of rheological behavior in processing
conditions becomes important. Yet theoretical studies of
these aspects of the polymer blends are sparse. Liu and Fre-
drickson developed a mean field thermodynamic theory to
study phase separation kinetics focusing on low frequency
and long wave behavior [4]. Muratov and E proposed a ther-
modynamic theory based on a kinetic theory approach for the
incompressible mixture of flexible polymers and rodlike lig-
uid crystalline polymers neglecting the details of the flexible
polymer chain [5]. They also investigated the phase separa-
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tion kinetics with an approximate theory employing a gradi-
ent expansion of the density function of the rodlike liquid
crystalline polymer. They identified various transitions lead-
ing to phase separation including a microphase separation
transition. In both of these theories, the detailed conforma-
tional dynamics of the flexible polymers are ignored. How-
ever, the conformational dynamics of flexible polymers
could be instrumental for a faithful hydrodynamic theory,
especially, in the dilute RNLCP regime typical of materials
applications. This paper addresses the local conformational
dynamics of both the flexible polymer and RNLCP in a hy-
drodynamic theory for the blend.

This paper aims at the following.

1) Introducing an additional probability density function
for the flexible polymer chains to account for the local con-
formational dynamics of the polymer at the molecular level.

2) Extending the Muratov-E kinetic theory to account for
added flexible chain dynamics and reenforce the incompress-
ibility constraint.

3) Coupling the kinetic (Smoluchowski) equation to the
momentum transport process by deriving the stress and body
force expressions accounting for the contribution from both
the RNLCP and the flexible polymer chain.

4) Demonstrating positive entropy production and
thereby the second law of thermodynamics under a suitable
condition on the mobility matrix in the kinetic theory.

We then approximate the bulk free energy functional us-
ing a gradient expansion scheme in physical space, arriving

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.041805

M. G. FOREST AND Q. WANG

at an approximate theory with potentials of differential form,
which captures mesoscale structures much larger than the
molecular scale. We remark that this approach builds upon
the hydrodynamic theories for solutions of rodlike liquid
crystalline polymers of the Doi type, see for example [6—8].
In a series of papers involving detailed force calculations
[9-11], Dhont and Briels developed a hydrodynamic theory
for suspensions of arbitrary shape and later limited to long
and thin rigid rods in viscous solvent extending the early
work of Batchelor’s on volume averaging techniques. This
theory takes into account the hydrodynamic interaction of
neighboring beads that constitute the rigid rod and distribu-
tion inhomogeneity of the rigid suspensions and is expected
to be applicable to flows of large density variation and ve-
locity gradients, complimenting the Doi kinetic theory for
solutions of rodlike liquid crystals. Viscoelasticity of the new
theory in simple flows is examined as well.

In kinetic theories for mixtures, one may introduce a sta-
tistical weight or its normalized counterpart, the probability
density function, for each component. However, they are not
independent if the mixture is incompressible. Since the in-
compressibility condition is a geometric constraint, it is nor-
mally given through the volume fractions. In Muratov-E
theory for binary mixtures of flexible polymer and RNLCPs,
the volume fractions can be interpreted as the quantity pro-
portional to the zeroth moment of the statistical weight for
each component at the macroscopic level. We also recognize
the fact that the incompressibility constraint is closely related
to the translational flux for each component, but has nothing
to do with the rotary flux of the RNLCP. This motivates us to
introduce the conformational dynamics for the flexible poly-
mer locally so that it will not affect the incompressibility
constraint imposed at the macroscopic level. Specifically, we
introduce a statistical weight for the flexible polymer matrix
O(x,{R};,), where x is the location of the material point, ¢ is
time, and {R};=(R,,...,R,) describes the conformation of
the flexible polymer chain modeled as a Rouse chain, i.e., a
bead-spring chain [6,18]. We assume O can be separated into
a product of two functions, ¢(x,7) and O({R};,7), where 0 is
a probability density function for the orientation of the Rouse
chain (whose norm is 1) and ¢ is the volume fraction of the
polymer per unit volume at the macroscopic level. The time
evolution of @ is given by the Rouse dynamics while that of
¢ follows the extended Flory-Huggins approach [5]. Since
the added conformational dynamics is local, it would not
affect the incompressibility constraint macroscopically. It
does however add a detailed conformational contribution of
the flexible polymer to the elastic stress. In principle, FENE,
FENE-p, and Giesekus models can all be cast in this form of
the kinetic theory.

The rest of the paper is organized into four sections. First,
we develop the theory with a nonlocal intermolecular poten-
tial accounting for Brownian motion, excluded volume ef-
fects, and long range molecular interactions. We show that
the theory satisfies the second law of thermodynamics under
a suitable condition for the mobility matrix. We then focus
on development of the approximate, weakly nonlocal theory
using a gradient expansion scheme for the density function
of the RNLCP. Finally, we compare the current theory with
that of Doi for rodlike nematic polymers in sheared mon-
odomains.
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II. HYDRODYNAMIC THEORY WITH A NONLOCAL
INTERMOLECULAR POTENTIAL

We first introduce the relevant statistical weights for the
rodlike nematic liquid crystal polymers (RNLCPs) and the
flexible polymers in the mixture, respectively, and devise the
free energy of the material system using the statistical
weights. Then, we enforce the incompressibility condition at
the macroscopic level to derive a constraint for the statistical
weights. In this manner, the statistical weight for the flexible
polymer can be eliminated so that the Smoluchowski equa-
tion for the RNLCP statistical weight, called the number den-
sity per unit volume, can be derived, providing a description
of the orientational distribution of RNLCPs as well as spatial
distribution of the entire material system. The elastic stress
tensor is derived through an extended virtual work principle,
and the constitutive viscous stress is derived following the
Doi-Edwards approach [6].

For incompressible mixtures of flexible polymers and rod-
like nematic liquid crystal polymers, we introduce two key
variables: (i) the number density of RNLCPs per unit volume
f(x,m,7) at (x,r) with molecular orientation axis m; and, (ii)
another statistical weight proportional to the number density
of flexible polymers per unit volume O(x,{R};,t) at (x,7)
with the chain conformation {R};=(R,,...,R,). A Rouse
chain (bead-spring chain) is used for the flexible polymer
with R; denoting the location of the ith bead. We normalize
O so that

¢(X’t) = J ®(X’{R}i7t)dR1 T an (1)
is the volume fraction of the flexible polymer at (x,z). We
further assume © is separable,

(X’{R}ist) = d)(X?t) 0({R}19t) 5 (2)

where O({R};,t) is the probability density function for the
Rouse chain, i.e.,

f O({R};,1)dR, -+~ dR, = 1. (3)

According to the definition of f,
Dd(x,1) = S(m,x,7)dm (4)

[[ml|=1

defines the number density of RNLCPs at location x and
time t. We denote the emsemble average with respect to the
probability density function 6 by

(M= f (1)0({R};, )dR, -~ dR, (5)

and the ensemble average with respect to the number density
function f by

()= (1)f(x,m,7)dm. (6)

[[mi[=1

We propose a free energy functional for the mixture of
polymers and rodlike nematic polymers consisting of four
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parts: free energy associated with the Brownian motion and
excluded volume interaction among the RNLCP molecules,
free energy for flexible polymers based on the Flory-Huggins
theory with a conformational entropy of the polymer chain
included, the elastic potential for Rouse chains, and the free
energy due to the contact interaction between the RNLCP
and flexible polymer molecules [5]. The free energy pre-
sented here is more general than the one used in [5] in that
the RNLCP molecular shape information can be naturally
built in through the shape characteristic function H(m,x)
defined below, and the range of molecular interaction can be
readily accounted for through a second kernel function
B(m,m’,x). It thus allows more general molecular configu-
rations and long range interactions to be modeled within the
framework of the theory. The excluded volume interaction
for the flexible polymers can be easily accounted for by add-
ing an additional excluded volume potential for Rouse chains
in the free energy [6], which has a negligible contribution to
the elastic stress. For the sake of simplicity, we neglect this
effect in the current derivation. In the following, we assume
the RNLCP molecules are monodispersed rigid rods, the
flexible polymer matrix consists of Rouse chains of uniform
molecular weight, and the effects of gelation, polydispersity
and polymerization of the flexible polymers are ignored.

A. Free energy

Let A[f] denote the free energy of the mixture in material
volume (),

A[f] = Flc + Fpoly + Fpulyrouse + Fint’ (7)

where F. is the free energy associated with the RNLCPs,
F o1 1s the entropic free energy associated with the flexible
polymers, Fypoue 18 the free energy associated with the
conformational change of the flexible polymer modelled as a
Rouse chain, and F;,, is the free energy due to the polymer-

LCP interaction. Specifically,

F,C=ka f (Fm,x,0)In f(m,x,1) - f(m,x,7)
Q Jm|=1

+2U(m,x, 1) f(m,x,7))dm dx,

U(m,x,t):f f B(m,m',x-x")H(m’,x' —x")
2 J|m’|=1

X f(m',x",t)dx"dx’'dm’, (8)

where f=f(m,x,7) is the number density of the rodlike lig-
uid crystal polymer in molecular direction m at location x
and time ¢,k is the Boltzmann constant, 7 is the absolute
temperature, B(m,m’,x) and H(m,x) are defined below, and
Q) is the domain that the blend system occupies;

I+ ¢ In p(x,1) + Xp¢2(x,t))dx,
n

b2

Fpoly = ka <_||V¢(X’t)
ol\2

)

where the gradient term is used for penalizing the spatial
inhomogeneity of the polymer representing the conforma-
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tional entropy, b is the coherence length measuring the
strength of the conformational entropy, x,, is the interaction
parameter for polymers, n is the polymerization index;

Fpolyrouse = kT7f ¢(X’Z) f [ 0({R}pt)ln 0({R}pt)
Q

+EX IR~ Rk_lllze({R,-},r)] (dR)dx, (10)
k=2

where § is the spring constant for the Rouse chain and vy is a
parameter of dimension of 1/volume (1/7y is proportional to
the effective volume of a flexible polymer molecule);

Fm,szxf f d(x',n)H(m,x — x')f(m,x,1)dx'dm dx,
02 Jm|j=1

(11)

where y is the polymer-LCP interaction parameter [6,5].
Here, we assume molecules of flexible polymers interact
with segments of the LCP molecule. We note that, when the
mixture is spatially homogeneous, our free energy expression
for the LCP alone (F,.) reduces to the one calculated from
the partition theorem by Doi and Edwards in [6]. The func-
tion
C

——|m X m’||, if x € B(O,R),
B(m,m’,x) =1 v(B) (12)

0, otherwise,

defines the excluded volume and the range of molecular in-
teraction with B(0,R) a ball of radius R in R?, v(B) is the
volume of the ball. C|mXm’|| is the excluded volume,
where C=2L%r, with L the length of the rodlike molecule
and r, its cross-sectional diameter. Of course, a more sophis-
ticated range of interaction can be constructed depending on
the level of modeling desired. In this paper, we adopt a
spherical domain for long range, isotropic interactions in
space, where

1
Himx) =] os0)" ¥ =50 13)

0, otherwise,

is the shape characteristic function of the LCP molecule, S(0)
is the domain occupied by the molecule with its center of
mass at the origin, v(S(0)) denotes the volume of S(0). This
shape function allows us to incorporate the molecular con-
figuration into the intermolecular potential extending the
applicability of the theory to more complex shapes of LCP
molecules. For RNLCPs, H is the normalized characteristic
function of a cylinder with height L and cross-sectional
diameter r,.

B. Incompressibility

We treat the polymer-LCP mixture as incompressible. Let

V=0v(5(0)) be the volume of each individual LCP molecule.
Then, the incompressibility condition states that the volume
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fractions of the two components add up to unity:

d(x,0) + VO(x,1)=1. (14)

That is, the mixture is filled with polymers and LCPs without
any free space. This constraint links the fundamental dy-
namical variable O (x,{R};,t) to f(m,x,7) and affects the ki-
netics of the mixture.

C. Kinetics

For translational diffusion of the LCP molecules, we
adopt the approach of Doi and Edwards [6], allowing mo-
tions along the direction of the LCP molecular orientation as
well as its transverse directions with distinct diffusivities D
and D |, respectively [6,12]. While the mixture is incom-
pressible, the incompressibility condition imposes a con-
straint on the transport equations for both ¢ and f such that
the transport equation of ¢ can be derived from that of f. E
and Palffy-Muhoray noted that the divergence of the transla-
tional flux of ¢ and ® must add up to zero in order to
maintain constraint (14). They then showed that their flux
condition is equivalent to modifying each flux by an addi-
tional pressurelike flux to accommodate the incompressibil-
ity constraint (14) [13]. DeGennes handled the incompress-
ibility constraint by requiring the fluxes add up to zero at any
material point [14], which is a special case of the E-Palffy-
Muhoray condition [13]. Although the E-Palffy-Muhoray
condition is more general, the pressurelike flux is very diffi-
cult to obtain analytically. As a compromise, we adopt Mu-
ratov and E’s approach, where a Lagrange multiplier is used
[5]; i.e., we propose modified translational fluxes for the
RNLCP and flexible polymer, respectively, as follows [5]:

kTj;=—-[Dymm+ D (I-mm)]- f(Vu, - Vh),

kTjy=~D4d(Vuy—h), (15)

where D and D | are the translational diffusivity in the di-
rection of m and its transverse directions, respectively; u;.
and w4, are the “extended” chemical potential of the LCP and
the flexible polymer, respectively, i.e., they are the variations
of the free energy with respect to f and ¢ while holding ¢
and f constant, respectively, and given by

oA
o= 5 = kT(In f+ 3(U+Uy))

+ Xka d(x',n)H(m,x —x")dx’,
Q

OA 1
,U,¢=—=kT<;(ln b+ 1)+2)(pq’)—b2A¢

: |

+XkTJf H(m,x' — x)f(m,x’,r)dx’'dm,
Q Y |ml=1

+ 7<<1ﬂ 0+ R - R,

k=2
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Uz(m,x,t):f f B(m’ ,m,x" —x')H(m,x’ —x)
02 J|m'|=1

Xf(m',x",1)dx"dx'dm’, (16)

Ue=%(U+ U,) is the effective intermolecular potential for
RNLCPs; h is a spatial flux (a Lagrangian multiplier) to be
determined by the flux condition defined below to ensure the
incompressibility condition (14). We impose the flux condi-
tion consistent with the incompressibility constraint (14) as
follows [5]

jot Vf jdm=0. (17)
[mll=1
This leads to

h=A"". lDd,gbV Mg+ X_/JI (Dmm + D | (I - mm))

=1

Xf(m,x,r) V ,u,cdm},

A =D ¢l + I_/ZJ (Dymm + D | (I - mm))f(m,x,t)dm.

[jml=1
(18)
The modified fluxes are then given by
kTj;=—(Dmm+D, (I-mm))-A™" - [DypV u
+ V2 [{((Dmm + D | (I-mm))) V w,. — ((D;mm
+D,(I-mm)) V w11,

ij¢=D¢(I>A"l\_/f (Dmm + D | (I - mm))
[ml=1

><f~V,udm:|, (19)
where

== Vg (20)

is the variation of the free energy with respect to f subject to
the incompressibility constraint (17).

Notice that w, is independent of the orientation variable
m, so the last two terms in flux j, can be written as

VA(Dmm + D, (I-mm))) - V.
—((Dmm + D | (I-mm)) - V)

= VX(Dymm + D | (I-mm))) - Vu
—((Dmm + D | (I-mm)) - V). (21)

So, the modified flux for f can be further simplified into
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kTjy=— (Dymm + D, (1-mm)) - f[Vu - V’A~" - ((Dymm
+D,(I-mm)) V u)]. (22)

We remark that the second term in (22) is a density averaged
restraining force which serves to maintain the incompress-
ibility constraint.

In addition to the translational fluxes, there exists a rotary
flux in the configurational space m €S> for the RNLCP
given by

where D,(m) is the rotary diffusivity and R=m X J/dm is
the rotational gradient operator [6]. We note that this rotary
flux does not contribute to the spatial flux on average since

f R -j.dm=0. (24)
Jm]=1

Together with the spatial flux, they constitute the total flux in
phase space (x,m) e R*X S? for the RNLCP. Analogously,
the flux of the flexible polymer in the conformational space
{R}; is also independent of the corresponding translational
flux. The chemical potential for the local Rouse chain can be
identified as

Ho= va[ln 0+ 1+ EX [Re— Ry | (25)
k=2
The conformational flux of the flexible polymer is given by

(ja)iz—H" J

U'Eﬂg, i=1,...,n, (26)
Vi

where H;; is the mobility matrix for the Rouse chain [6].

D. Smoluchowski equation

Given the above fluxes due to translational and rotary
diffusion and taking into account the spatial convection as
well as the rotary convection [6], we follow Doi and Ed-
wards to arrive at the Smoluchowski equation for f(m,x,?)
as follows:

df ) D,(m) .
="V )R (k—;nﬂ%u> —R - (m Xmf),
m=K -m-K:mmm, (27)

where K=Vv is the velocity gradient tensor and d/dt=3d/dt
+v-V is the material derivative. It is an integro-differential
equation for f. The time evolution equation for the volume
fraction ¢ is given by

d
—p==V-j,., 28
dt¢ Jo (28)

which can also be derived from the Smoluchowski equation
for f through averaging. The time evolution equation for 6 is

PHYSICAL REVIEW E 72, 041805 (2005)

d J
—f=——".

1% d
K-(1-a)D|- R0 +— H;;-| |,
dt &R, ([ ( a) ] i )+(9Ri ij ( Mo )

JR,
(29)

where —1 <a =1 is a rate parameter describing the extent of
the nonaffine motion, H;;=(1/ g"p)I is the mobility matrix for
the Rouse model and ¢, is a friction coefficient for the Rouse
chain [6]. In order to couple the kinetic equation for the
momentum transport process in the macroscopic flow, we
need the stress and body force expression for the mixture

[15].

E. Stress tensors and the elastic body force

The extra stress is given by two parts, the viscous stress 7,
and the elastic stress 7,:

T=T,+ T,. (30)

Here we consider two sources for the viscous stress. There
must be a zero-strain-rate viscosity while the mixture is iso-
tropic. We denote this as 7,. The viscous stress associated to
this effect is denoted as 27,D. In addition, there is a viscous
stress due to the friction between polymers and RNLCP mol-
ecules. Using the same argument as Doi and Edwards [6], we
arrive at the viscous stress 2k7¢/D : (mmmm), where the fric-
tion coefficient ¢ is approximated by a linear function of the
polymer volume fraction ¢ (embeded in the ensemble aver-
age ()) to ensure the viscous stress vanishes in the region
where RNLCPs are depleted. The overall viscous stress is
therefore given by

7,=2m,D + 2kT¢{D:(mmmm). (31)

The elastic stress and extra elastic body force are derived
through a virtual work principle [6]. Consider an infinitesi-
mal displacement given by du=vdr corresponding to a de-
formation rate Se=Kot. The variation of the free energy (7)
in response to the infinitesimal deformation and displace-
ment is equal to the work done by a body force along the
displacement and the stress with respect to the deformation
rate:

5A:f [e:7,— Su-F,Jdx, (32)
Q

where F, is the elastic body force induced by the long range
interaction between the RNLCPs and polymer-RNLCP inter-
action. It follows from a long calculation summarized in Ap-
pendix A that

F,=- kT|:<VUe) + )(f [p(x",0)(VH(m,x —x"))
Q

+ ¢(x,6)(VH(m,x’ —x)}]dx} , (33)
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where
(VH(m,x -x")) = (VH(m,x - x")) f(m,x,1)dm
=1 »
and
7,=—{(m X Ru,m) —kTh*V ¢V ¢+ ¢< 21 %R’
(35)

We note that

n n—1
2 <<%R‘>> = 2kTy€2, (((Ris; ~ R)(R;y; — Ry))) + const
i=l i i=1

X 1. (36)
The total extra stress is then given by

7=2n,D + 2kT{D:(mmmm) — {m X R, m)
n—-1

—kTb*V ¢V b+ 29kTHED, ((Riy - R) (R — R))).

i=1
(37)

The elastic stress expression includes contributions from the
RNLCP, the flexible polymer and the polymer-LCP interac-
tion, some of which are nonlocal. We note that the expres-
sion for the elastic stress and the extra elastic body force are
interrelated. If the body force can be written into a diver-
gence of a second order tensor, the tensor can well be ab-
sorbed into the stress expression. Therefore a true elastic
body force exists only when it cannot be identified with the
divergence of a second order tensor.

The existence of the elastic body force is a consequence
of the spatial convection of the RNLCPs and the nonlocal
LCP-LCP as well as polymer-LCP interaction as shown in
the derivation in Appendix A. When the long range interac-
tion is allowed to affect different material points, the nonlo-
cal potential exerts a macroscopic body force, part of which
becomes the extra elastic body force and the other equals the
divergence of the elastic stress. This is a generic phenom-
enon so long as the intermolecular potential is nonlocal in R
[15].

Let p, be the polymer density and p;. the density of the
RNLCP. The density of the mixture is given by

p=pyb+ pi,VP. (38)
If p,=pjcp» the incompressibility constraint implies that
p=0. (39)
The continuity equation
p+pV -v=0 (40)

implies the divergence-free condition on the velocity field

PHYSICAL REVIEW E 72, 041805 (2005)

V.-v=0. (41)

Otherwise, the mass conservation (40) serves as a constraint
for the flowing mixture system:

V.ve—inp. (42)

In this paper, we assume p,=py, so that the continuity equa-
tion (41) holds. In general, the stress would have to be modi-
fied to reflect the constraint imposed by the continuity equa-
tion (40).

F. Governing equations

The Smoluchowski equation, the stress expression along
with the elastic body force, continuity equation and the bal-
ance of linear momentum equation constitute the governing
system of equations for flows of the polymer-LCP mixture.
We summarize them in the following.

Continuity equation:

d
—p+pV -v=0. 43
PPy Y (43)
Balance of linear momentum:

pv=V-(-pl+7)+F, +pg, (44)

where p is the static pressure and g is the external force per
unit mass.
Smoluchowski equations or kinetic equations:

af

E=—V~(jf)+7?,-(

D,(m)
kT

fR,U«)—R'(erhf),

m=K-m-K:mmm,
iqs_ V 3
dr’ Jo

4y 9 (K-(1-a)D] RO+~ W ( 4 a)
— == —" — —-a . . _ e | — .
dr’ " GR, TR, aR M

J
(45)
Stress constitutive equation:
7=2n,D + 2kT{D:(mmmm) — (m X R, m)

n—1

—kTV*V ¢V b+ 29kTHED, ((Riy - R)(R;y; — R))).

i=1

(46)
Body force constitutive equation:
F,=- kT{(VUE) + Xf [H(x',6)(VH(m,x —x"))
Q
+ ¢(x,))(VH(m,x’ — x))]dx’] . (47)

We next examine the dissipative property of the theory.
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III. ENTROPY PRODUCTION AND ENERGY DISSIPATION

We denote the entropy of the mixture system in the control volume () by S. The entropy production of an isothermal system
is given by [16]

. d
TS=——lf %pv~vdx+A[f]]
dt| Jo

=—f (V'(—pI+TU+Te)+Fe)~VdX—f iA[f]dx
Q qdt

:f ((—pI+TU+Te)ZVV—Fe)'VdX—f iA[f]dx
a qdt

d*
:f TU:Vvdx—ff pu—f(m,x,1)dm dx
0 0 Jml-1 - dt

= f [27,D:D + 2kT¢({(mm:D)?)]dx + L (V- (Dmm + D | (I - mm))
0 kT J
[Vu- VA ((Dmm + D | (I-mm)) - V)] + R - D, R p)dx
= J [27,D:D + 2kTZ{(mm:D)?)]dx + LJ (V- (Dymm + D | (I-mm)) - Vu)
Q kT J o

~ VX(Dmm+ D, (I-mm)) - V- A~ - (Dymm + D, (1 - mm)) - Vi) + (Rpx - D,R)]ldx., (48)
where

*

=V - (Dmm 4D, (- mm) - [V~ A (Dmm + D, (- mm)) - V)] + R (D, (m)fRp).  (49)

A necessary condition for (48) to be nonnegative definite is
(V- (Dmm+D  (I-mm)) - Vu) — ‘_/2<(D”mm +D, (I-mm))-Vu)- A~ ((Dmm+ D, (I-mm))-Vu)=0. (50)

Unfortunately, we are unable to establish the inequality for any max(Dy,D )>0 and D;,D, =0. For a special case Dj=D |,
however,

(Dmm + D | (I-mm)) =D|1, (51)

(V- (Dmm + D | (I-mm)) - V) — VA(Dyjmm + D | (I - mm)) - w) - A~ - ((Dymm + D | (I - mm)) )
= D([[Vull?) = VA(Dyop + VX1)D) ' DIV i
= (Dyp+ V*D(1)'[(D g + V' D) DIV ul) = V2DV )]

=(Dgp+ VD) [(D gDV ) + V2DV X1y = V2D KV )] = (D g+ V2DK1) ' [(D gp) DIV ul»] = 0,
(52)

where the Holder inequality [17]
KV IP < IV X1y (53)

is used. Thus positive entropy production is satisfied and
thereby the second law of thermodynamics. In other cases,
we conjecture that the positive entropy production is satisfied
so long as Dy, D, =0. The default option is to check the
inequality (50) to ensure the positive entropy production af-

ter solving for the density function for any given values of D,
and D .

IV. APPROXIMATE THEORIES

The kinetic theory developed above has a nonlocal effec-
tive intermolecular potential w. The elastic stress expression
is therefore nonlocal. Moreover, the nonlocality also induces
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an extra elastic body force that could not be written as the
divergence of an elastic stress tensor, thereby leading to a
nontrivial elastic body torque on the material point in the
mixture. If one were to derive mesoscopic differential con-
stitutive equations for the orientation tensor, the nonlocality
would pose a significant problem. In order to overcome this
difficulty, we propose a gradient expansion scheme for the
density function f and the volume fraction function ¢ of the
polymer, in which the free energy functional is rewritten so
that, after the functions are expanded in Taylor series, the
intermolecular potential is eventually given by the gradients
of the density function.

We rewrite the free energy functional in the following
equivalent form suitable for series expansions of the density
function f and the polymer volume fraction ¢:

F,c=ka J (fFInf - f+2U(m,x,0)f(m,x,1))dx,
@ Jjmi=1

vmxn=| [ [ cmxm
B(O,R) Y 5(0) Y |m’|=1

Xf(x+x"+x"m’,)dx"dx"dm’,

kTX L2
e f f f d(x+mx’,1)f(m,x,1)dx'dm dx.
L JoJ 1 Jjm|=1

(54)

Fint=

Expanding the density function f(m,x+x’'+x",t) for RN-
LCPs and the volume fraction of polymer ¢(x+mx’,7) in
Taylor series at x, we have

Sx+x"+x",m,1) = f(x,m,1) + Vf- (x +x")

+ % VVfx' +x")(x" +x")+ -+,

d(x +mx’,m,7) = p(x,m,t) + Vo - (mx')

+%VV¢:(mmx’2)+ (55)

We also approximate the excluded volume formula using ir-
reducible tensors [18-21],

Cm X m'[ = a(1 - B(m-m')%), (56)

where we leave the specific form of « and S as free param-
eters. One set of values of (a,B) can be found in [19-21].
Our aim for the approximate theory is to apply it to model
mesoscale structures which are much larger than the molecu-
lar scale; we will therefore truncate the series expansion at
the quadratic order. Of course, more refined structure may be
captured by retaining higher order terms. The approximate
intermolecular potential is then obtained after the quadrati-
cally truncated series is substituted into the free energy
formula,

PHYSICAL REVIEW E 72, 041805 (2005)

3C £ P
U,(x,m,1) = —‘{(1 +—A+ —mm:vv)q>
2 24 24

2 2 ) ]
—,3<I+ 24A + 24mm.VV (mm):mm |,
(57)

where C;=(2a/3)v(B)v(S) and L and [ are functions of R
and L. We denote the symmetrized version by

_ 3C, £ P I
Uxm)=— |1+ —A+—mm:VV |0+ —VV:M
2 2477 48 48

£r P
=Bl {I+—A+ —mm:VV)M:mm
24 48

12
+&mmVVZZM4}], (58)
which yields the equal bulk free energy as U does, and
M = (mm),

M, = (mmmm). (59)

The symbol :: and : denote the tensor index contraction with
respect to four indices and two, respectively. The approxi-
mate free energy is then given by

A(G)U] = f f I:f lIlf—f+ %l_]af]dm dx + Fpoly + Fpolyrouse
Q Jm]

L2
+kTXf f (1 + —mm:VV)fﬁfdm dx
0 J jm=1 24

+ ykT f
Q

The effective chemical potential is calculated as

n-1

In 0+ &> |R, - R
i=1

Pdx. (60)

_ L? _
e =kT(ln f+U,) + XkT(¢+ imm:VWﬁ) - Vidg,

ﬁ¢=kT<rll(ln d+1)+ 2Xp¢—b2A(b>

12
+ XkT((I) + 7 \% V:M)

. (61)

n-1
+ ykT<<ln 0+ £ Ry - R
i=1

After a lengthy derivation, summarized in Appendix B, we
arrive at the elastic stress
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EZ
[VOV®D-DVVD]

7=~ (m X Ru,m) +

(kTP
+C [VOV -M-VV® -M+ (VM) - VO
BCkTL?
—(VV-M)D] - 3—2[VM:VM - (VVM):M]
BCkTP

i LVVMM, + (VY- M,):M - VM:(V - M)

) L?
-VM, : VM]-kTb*V ¢V ¢+ akTX[VqSV ‘M

n—1

~(VVe) - M]+ ykTéH\| > (R, - R)(R;,; — R))
i=1

(62)

Since the chemical potential depends on the density function
f through its gradients, the extra elastic body force is identi-
fiable with an extra elastic stress tensor which has been in-
corporated into the stress expression. That is, no irreducible
elastic body force is present in the approximate local theory.

With the approximate effective intermolecular potential,
the Smoluchowski equation for the density function f is
again given by (45) except that the effective chemical poten-
tial is given by (61). The inequality on entropy production
can be established analogously provided the same condition
on the mobility matrix is satisfied. The time evolution equa-
tion for ¢ is again given by (28) with the approximate
chemical potential (61).

It is well known that the truncated gradient expansion is
valid only for long waves [5]. We therefore anticipate an
analogous limitation of the approximate theory applied to the
flowing mixture system.

V. MODELS FOR FLOW-DRIVEN BULK MONODOMAINS

For a homogeneous monodomain, the theory reduces es-
sentially to a linear combination of the Doi kinetic theory
and the kinetic theory for the Rouse chains with a volume
fraction weighted stress tensor.

For the Rouse model, there exists a normal mode trans-
formation that decouples the chain {R;} into n—1 indepen-
dent modes {q;} [22]. Correspondingly, the PDF 6 decouples
into n—1 independent PDFs for each mode:

=115/ 6(ay). (63)
The normal mode decomposition preserves

n—1 n—1

> Ry —R)R, —R)N =2 (qq)).  (64)
i=1 i=1

The Smoluchowski equation for each mode is given by
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db, d d 9
- . ([K—(l —a)D] 'qiei)+_ Hz <_lug)01)’
dt aq; aq; aq;

(65)

where H,= (1/§(’))I is the mobility matrix with the friction
parameter ¢ ’)—gp/smz(m'/ 2(n)), ¢, is a nominal friction pa-
rameter, and ,u,(9 the chemical potential for mode q;

wi) = ykTlin 6, + &q . (66)

The extra stress tensor is given by

7=27,D + 2kT{D:(mmmm) — (m X R, m)
n—1

+2kT e, ((9,q,)), (67)
i=1

which is a volume fraction weighted extra stress from the
Doi theory for NLCPs and from the Rouse model. When the
volume fraction ¢=1, we recover completely the Rouse
stress; whereas when ¢=0, we have the Doi stress. Taking
the second moment of q; with respect to 6;, we arrive at the
evolution equation for ({(q;q;)):

“aad) - W Caa) + aa) - W

- a[D - (q,q;)) +{{q:9) - D]
2kTy 4§kTy
=70 ' <<q q1>> (68)
& &
This is the Johnson-Segalman model [22]. With this, we can
completely ignore the kinetic equation for 6; with respect to
the ith mode.

As a simple demonstration, we evaluate the apparent vis-
cosity and the normal stress differences in simple shear flows
with shear rate w:v=(uy,0,0)”. We show these using an
approximate tensor-based model resulting from the closure
approximation:

<mmmm>ijkl

aoQ;;Qu + (Isz 1+ Quly) |,

(69)

where a, is an interpolation (|ao|<1) or extrapolation
(|ag|>1) parameter and

Q= é(mm> (70)

is the structure tensor for RNLCPs [6]. We note that f/® is
the probability density function for the RNLCPs provided
@ #0 so that

tr(Q)=1. (71)

The approximate intermolecular potential for the RNLCP is
— 3IND

U,=- Tmm:Q, (72)

with dimensionless concentration N [6]. The time evolution
equation for Q in the kinetic theory is given by
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Lo-w W-[D pl=- 2
SQ-W-Q+Q-W-[D-Q+Q:-D}=- "

:(mmmm) - 6Dr{Q -1/3-N(1 - $)Q

PHYSICAL REVIEW E 72, 041805 (2005)

-Q+N(1 - ¢)/PQ:(mmmm)],

(73)

which is obtained by taking the second moment of m with respect to the NDF f. After applying closure (69), the equation is

approximated by

d
4 W-Q+Q-w —ao[D-Q+Q-D]=-24,D:QQ -6Dr{Q-1/3-a,N(1- $)Q-Q+a,N(1-¢)Q:QQ], (74)

where a; € [-1,1] is an interpolating parameter. With the help of the orientation tensor equation, the extra stress tensor

becomes

n—1

7=27,D + 2kT{D:(mmmm) + 2kT¢y§E {q,q,)) + 3kTO[Q -1/3 - N(1 — $»)Q - Q + N(1 — ¢)Q:(mmmm)/D]

i=1

3kTD

n—1

=- [ —Q-W-Q+Q-W-[D-Q+Q- D]}+27IUD+27€T<§— Dr )D<mmmm>+2kT¢7§2 (CTh

6Dr
3kTD

i=1

=——[ —Q-W-Q+Q-W-¢|D-Q+Q- D]}+277UD+2a0kT<§— )(I)DQQ

6Dr

n-1

+(1 = @)kT{®(D - Q + Q- D) + 2kThyé Y, (q;q,))-
i=1

We introduce a polymeric stress tensor for flexible poly-
mers

= ykT‘f(z«q,»qi» - él) . (76)

follows from (68)
4a A0 W, ) W, ) i
-W-rJ+77 - W-a[D- 7+ 77 D]+

The time evolution equation for 7

dt \;
77(i)
=2-2D, (77)
A;
where A\ §(’)/4kT§y is the polymer relaxation time and
n(l)—ag’ / 4§ is the polymeric viscosity. The extra stress fur-
ther redqlces to
3kTD
=" eDr Q W-Q+Q-W-qD-Q+Q-D]

+27,D + 2a0kT(g- )CI)D :QQ

+ (1 —ag)kT{P(D-Q+Q-D)
n—1

> 7'1(f) + const X I. (78)
i=1

Using the RNLCP relaxation time as the characteristic time
to=1/6Dr and the gap width (4) of the shearing device as the
characteristic length scale, we arrive at a dimensionless
group

(75)

(i)
Pe = L De = & Re = ﬂ Re® =
T Molo 7

(79)

Re,,=6Dr / kT, Rej,=1/¢kT,where Pe is the Peclet
number, De’ () is the Deborah numbers for the ith mode of the
flexible polymer, where i=1,...,N,Re, Re Rehp,Relcp are
the Reynolds numbers parametrlzmg the” v1scosny coeffi-
cients in the model for the mixture, and f,= phz/ ty is a char-
acteristic stress that is chosen as the inertia stress here. The
extra stress in dimensionless form is given by

3
T=[ Relq,[dtQ W-Q+Q-W-qD-Q+Q-D]

3
Relq,

2
+—D+2a0( )D QQ + (1 -ap)
Re

v
Re /cp

n—1

(R )(D Q+Q- D)](1—¢)+¢E A (80)
lcp

The dimensionless orientation tensor equation and the equa-
tion for TL’) are given respectively by

d
d—tQ—W-Q+Q-W—ao[D'Q+Q'D]

1
==2a,D:QQ - D_e[Q -13-aN(1-4)Q-Q
+a,N(1- $)Q:QQ],
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FIG. 1. The apparent shear
viscosity, primary normal stress
o, coefficient, order parameters, and
s, the Leslie angle as functions of
i the Peclet number for Johnson-
" Segalman fluids (¢=1, dashed
) curves),  half-half ~ RNLCP-
polymer mixture (¢p=1/2, dotted

10

curves), and RNLCPs (¢=0, solid
curves). Re=20, Rey,=1, Re,
=5, Re)=100, De)=0.01, N=6,
a=ay=a,=0.85, ap=1, where

10
Pe

0.8 heeomnme,
0.6
0.4

0.2

Re' = 1/R62 sin(ir/2n), De(pi)
=De)/sin’(im/2n). 10  Rouse
modes are used, i.e., n=11. Shear
thinning for all fluids. “Isotropic-
to-nematic” phase transition is
present in the mixture, which
shows up in the apparent viscosity
(74pp=Tyy/Pe) and the primary
normal stress coefficient W,
=N,/Pe’.

— ¢=0
0=0.5

_2 0 2 —-2

10 10 10
Pe

(i)
N
D]+
De

4

4

(i) o L) (i) o ()
AL -W.rl+77 W—a[D- 7]+ 17

2
(i) p )
Dep Rep

The steady shear stress and the normal stress differences
for the flexible polymer part can be easily calculated for the
ith mode:

() _ s
T;x y — i i s
PO Re(1 + (1 - a®) u*(Del)?)

2u*De!)
Rel(1 + (1 - a®) p*(De)?)’

N =

P

(1-a)u’De?

N =- — —.
Rel(1 + (1 - a®) u*(Del)?)

p

(82)

o

The corresponding ones from the RNLCP contribution are
tedious and thus omitted.

Figure 1 plots the steady state apparent shear viscosity
defined as the ratio of the shear stress to the shear rate, the
primary normal stress coefficient defined as the ratio of the
first normal stress difference to the square of the shear rate,
the order parameters (s,8) and the major director angle ¢
with respect to three volume fractions ¢=0,0.5,1 sampling
the limit of pure Johnson-Segalman (JS) fluids, mixture of
half RNLCP and half flexible polymer, and the limit of Doi
RNLCPs, respectively. Here the orientation tensor is written
into its spectral decomposition

10°
Pe

_I 1 . ¢_£>
Q—3+s<nn 3>+B(n n 3 )

n=(cos ,sin ,0), n*=(=sin ,cos #,0). (83)

The mixture exhibits shear thinning behavior since both the
JS fluid and RNLCP do. In the semidilute limit of the mix-
ture, a phase transition takes place leading to a noticeable
change in the apparent shear viscosity as well as the primary
normal stress coefficient. Before the phase transition, the ap-
parent shear viscosity in the mixture is larger than the one in
the pure JS fluid. After the phase transition however, a no-
ticeable reduction in the viscosity is shown. The primary
normal stress coefficient of the mixture also exhibits a cross-
over with that of the pure RNLCP at the phase transition
Peclet number. Figure 2 depicts the storage G’ and the loss
G" module calculated from the model at the three distinct
values of volume fraction. We defer a more detailed study on
the rhological predictions of the model to a sequel.

VI. MODEL EXTENSIONS

From the derivation of the theory, we notice that the con-
formational dynamics of the flexible polymer essentially de-
couples from the dynamics of their center of mass as well as
the dynamics of the RNLCPs due to the separable assump-
tion. This indicates that we can literally replace this part of
the theory by any kinetic theory of polymers for bulk mon-
odomains so long as they are spatially homogeneous. For
example, the Rouse dynamics can be replaced in the theory
by that of FENE, FENE-p, Giesekus model, etc. Another
consequence of the derivation is that the resultant elastic
stress contains a volume fraction averaged polymeric stress
from the homogeneous kinetic theory of polymers. The ef-
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-4 —~2 Q 2

10 10 10 10
Pe

FIG. 2. The storage and loss module (G’,G") as functions of the Peclet number for Johnson-Segalman fluids (¢=1, dashed curves),
half-half RNLCP-polymer mixture (¢=1/2, dotted curves), and RNLCPs (¢=0, solid curves). The parameter values are identical to those

in Fig. 1.

fective strength of the intermolecular potential is param-
etrized by the product of the dimensionless concentration
and the volume fraction of the RNLCP: N(1—-¢). As the
volume fraction of RNLCPs decreases, the intermolecular
interaction weakens leading to the phase transition behavior
at small volume fractions.

VII. CONCLUSION

A hydrodynamic theory for incompressible polymer-LCP
mixtures has been developed generalizing the kinetic theory
for phase separation Kinetics derived by Muratov and E [5].
We modified the translational flux for the density function f
in [5] so that the incompressibility constraint is upheld ex-
actly. We added the detailed viscoelastic dynamics of flexible
polymers modeling the flexible polymer as a Rouse chain.
We then show that the elasticity due to the nonlocal (long-
range) molecular interaction contributes not only to the stress
tensor, but also to an extra body force. The extra elastic body
force is intimately related to the nonlocality of the intermo-
lecular potential, in that it would be a divergence of a second
order tensor were the chemical potential local and thereby
would be absorbed into the elastic stress tensor. With our
modified translational fluxes, we establish positive entropy
production and thereby the second law of thermodynamics
for the theory, provided a necessary condition for the mobil-
ity matrix to satisfy. This theory gives the explicit relation

between the stress of the RNLCP and that of the flexible
polymer by a volume fraction weighted extra stress formula.
It provides the crucial coupling between kinetic theory and
momentum transport, and lays the foundation for study of
the hydrodynamics of the flowing mixture.

We then derive an approximate, differential theory by ap-
proximating the density function of the RNLCP and the vol-
ume fraction of the flexible polymer by their truncated Taylor
series. Consequently, the free energy in the approximate
theory depends on the density function and the volume frac-
tion as well as their gradients explicitly. Through the virtual
work principle, we derive the expression for the elastic stress
tensor, which includes extra terms whose divergence would
be part of the extra elastic body force were the free energy
nonlocal.

This theory and its approximations provide a platform for
studying flows of LCP-polymer mixtures, of which rodlike
nematic polymer nano-composites are primary examples.
The nonlocal theory is suitable for a stochastic simulation
with equivalent Langevin equations (stochastic odes) for the
spatial variables x and the configurational variable m [23].
On the other hand, the approximate theory is better suited for
a direct numerical simulation of the Smoluchowski equation
or further approximations based on moments of the density
function f. Further evaluation of the theory on benchmark
problems is currently underway.
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APPENDIX A: DERIVATION OF THE ELASTIC STRESS
TENSOR AND THE EXTRA ELASTIC BODY
FORCE FOR THE THEORY OF A NONLOCAL
INTERMOLECULAR POTENTIAL

Consider an infinitesimal displacement given by du=vdt
and the corresponding deformation de=Két. The variation of

PHYSICAL REVIEW E 72, 041805 (2005)

the density function f in response to the infinitesimal defor-
mation is given by the variation of the density function f
along the path of the material point [6]

af

5f=55t=—73~(m><mf)5t. (A1)

We then calculate the variation of the free energy with re-
spect to Of:

SF,.= kT J f [(Inf+30)8f+3f6Udmdx.  (A2)
0 Jjmj=1

The variation of the intermolecular potential with respect to
Of defined by (A1) is obtained as follows:

d
oU=— Bm,m',x —x")H(m',x" —x")f(m’,x",1)dx"dx’dm’ 5t
dtJ o> Jjmjr

= f f v(x,f) - VB(m,m',x —x")H(m',x’ - x")f(m’,x",1)dx"dx' dm’ 6t
0% J|m’|=1

J
+f f Bm,m',x —x")H(m',x" —x")—f(m’,x",1)dx"dx’dm’ 5t
02 |mrH=1 ot

:j f v(x,f) - VB(m,m',x —x")H(m',x’ — x")f(m’,x",1)dx"dx' dm’ 6t
02 Jjm’|=1

d
+ Bm,m',x —x")H(m',x" —x")—f(m’,x",1)dx"dx'dm’ 6t
2 Jm’|=1 dt

—J j B(m,m’,x —x")H(m',x" —x")v(x",1) - Vuf(m’,x",1)dx"dx'dm’ t.
2 J |21

Using integration by parts,

ff oU(m,x,)dm dx
Q Y ml=1

(A3)

= f j f(m,x,t)lf f v(x,f) - VB(m,m',x —x")H(m',x’ — x")f(m’,x",1)dx"dx'dm’ &t
Q Y [lm|l=1 0 J|m’|=1

d
+ Bm,m',x —x")H(m’,x" - x")—f(m’',x",1)dx"dx' dm’ 6t
2 Jm’||=1 dt

- f f Bm,m',x —x")H(m’,x" —x")v(x",1) - Vf(m’,x",1)dx"dx'dm’ |dx dm &t
02 Jjm’|=1

= f j f(m,x,t)lJ f v(x,7)- VB(m,m',x —x")H(m',x’ — x")f(m’,x”,t)dx"}dx’dm’ét
Q Y jmj=1 0 J|m’|=1

+f J U,d6fdm dx+f f J Sm’ x", 1)v(x,r) - V,B(m',m,x" —x")
Q Y |ml=1 03 Jml=1 Jjm’|=1

XH(m,x' —x)f(m,x,7)dx"dx'dm’dx dm 6t

:J f [U,8f+v-V(U+ U,)f(m,x,1) 5t ]dm dx.
Q Jml=1

(Ad)
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Then, using the definition of U, and integration by part, the
variation of the free energy can be rearranged to the follow-
ing form:

5F,C=kT{Jf (1nf+1(U+U2))5f
0 Jjmj=1 2

1
+ Ev(x,t) V(U + Uz)f&] dm dx, (A5)
where

,LL1=kT(1nf+%(U+ U2)) (A6)

Notice that

J f Mlﬁfdm dx
Q Y jml=1

of
= M1 — 5tdm dX
0 Jjmj=1dt

Q < mlj=1
:f f Ry - (m X K- mf)Stdm dx
Q 7 [jmlj=1

=— &kTJ K:(m X Ru;m). (A7)
9]

So

OF,.=— 5tka K:(m X R u,m)dx
Q

+ 5tgf v V(U + U,))dx. (AB)
2 Ja

The stress contributed by this part of free energy is identified
as

TZ:]J == kT<m X R,(le>, (A9)

and the extra elastic body force associated to Fj, is given by

F{,=—kT(VU,), (A10)

where

Ue=%(U+ U,) (A11)

is the effective intermolecular potential. Next, we examine
the contribution to the elastic stress from the free energy
related to the flexible polymer by calculating the variation of

F,,;, with respect to ¢

PHYSICAL REVIEW E 72, 041805 (2005)

1 1
5Fp(,,y=kaQ {MV d6V P+ (]T/ In ¢+ N+2Xp¢>5¢]dx.

(A12)
From the incompressibility constraint, we have
S+ Vf 5f=0. (A13)
[[mlj=1
From
f of = R - (m X mf)dm =0, (A14)
[[mlj=1 [Jmlj=1
it follows that
0¢4=0. (A15)

From (A1) and the incompressibility constraint, we notice
that 6 and V does not commute, i.e., 8V ¢ # V. In fact,

oV =6V dp-Vép=-Kz,Vsd. (A16)
Combining all above together, we have
OF o1y =— kT L ) b’K, gV o,V gpdx 6t (A17)
The corresponding stress contribution is given by
Toory=—UkTV ¢V . (A18)
Analogously, we have
d
5Fpol_vmuse = d)gKa,B EM&Rz dx ét. (A19)
Q i
This leads to
. d
Tpolyrouse: §¢ EIU'HRI . (AZO)
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Finally, we calculate the variation of the free energy responsible for the polymer-LCP interaction to obtain the stress as well

as the extra elastic body force due to this effect:

5Fm,=kaf f {(;S(x’,t)H(m,x—x’)6f(m,x,t)+v(x,t) -VH(m,x - x")p(x’,1) f(m,x,1) 5t
0? J =1

+ (%(ﬁ(xl’t) - V(X”t) : Vx’¢(x,,t))H(m,X - X’)f(m,x,t)&t]dx’dm dx

=- kT)(f 5tK:<f P(x',H)m X R(H(m,x—x’))dx’m>dx+kT)(f
Q Q s

- f V ¢(x,0)H(m,x" — x)f(m,x’,t)dm]dx'dx’
[ml}=1

=— kaf oK:
Q Q

+ ¢(x,))(VH(m,x' — x))]dx’dx,

where integration by parts is used and

(VH(m,x—x’)):J H(m,x —x’)f(m,x,7)dm.
\

Iml[=1

(A22)

The contribution of the free energy to the stress tensor is
given by

7'fm=—kT)(<f P(x',)m X RH(m,X—X’)dx’m>.
Q

(A23)
The extra elastic body force is identified as
Fi,=- kTXf [¢(x',0)(VH(m,x —x'))
Q
+ ¢(x,1)(VH(m,x" —x))]dx". (A24)

Summarizing the above calculations, we obtain the elastic
stress for the mixture system

T= 7-lecp + T[emly + 7fnt + T]eml_vmuse

= —(m X Rpym) - bkTV ¢V ¢+ ¢<<£MQR,~>>

(A25)
and the extra elastic body force

Fe = Fi{,‘p

=— kT[(VUe) + Xf [H(x",0)(VH(m,x —x"))
Q

+F¢

int

+ ¢(x,t){VH(m,x' — x))]dx] . (A26)

¢(x',)m X R(H(m,x —x’))dx’m> + kT)(f
«

otv(x,1) - l(d)(x’,t) V H(m,x — x'))dx’
)2

orv(x,1) - [{p(x",1) V H(m,x - x"))
22

(A21)

APPENDIX B: DERIVATION OF THE ELASTIC STRESS
TENSOR IN THE APPROXIMATE THEORY

We derive the elastic stress for the approximate theory.
We follow the same approach outlined in Appendix A and
begin with the approximate free energy:

A(a)[f] = Fgf) + Fpoly + Fpolyrouse + F('a)

nt >

(B1)

where

Fﬁ:ka f [fing+i0flamax,  (B2)
0 Jjmi

_3C PP I
U,= 1“1+—A+—mmﬂV%ﬂ~—V%M
2477 48 48

£ P
-B (I +—A+ —mm:VV)M:mm
24 48

+l mmVVIIM4”, (B3)

2
48
and

L2
F\9 = kt)(f f (1 + —mm:VV)¢fdm dx. (B4)
aJm\ 24
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We calculate the variation of the free energy F;. with respect ~ where
to the variation of the density function f:
_ df
d - ul
5F(a) — _F(u)at I= ka J (lnf+ Ua) Stdm dx
e = Fie lm=1 dt
_ d _ . ()
=ka f [(lnf+ Ua)—fﬁt fﬂ K:(m X Rpu, 'm)dx, (B6)
0 J fmf=1 di
du, a’f
2 ay ot |dmdx=1+1I, (BS) where
|
V=kT(nf+U,), (B7)

="t ( Cap_ Udf>d dx 5_3C1"Tff { {(D(iA—Ai>®—B<M:(iA—A£>M>]
2 QO |ml=1 24 dt dt dt dt

48

24

do dM d
AD— - ,B(M:A— - AM:—M)]
dt dt dt

L2 d
+ —[@A — -

d d
-B(M, :: VV—M+MVV:—M,——
B( 4 ar ar *

We note that

d d
d_tvivi - ViViE = Vi(KjiVj) - Kjivivj’

d d
d—tV,Vj - VZV]E =— Vt(Kl]Vl) - KZiVle. (Bg)

Using the identities, dropping the surface terms in /I, and
applying integration by parts, we have

3C kT
4

1=

£2
fﬂ Kl]{ QV](I)VI(I) - q)VlV](I) - B(ViMleijl

2

l
- MleiVjM,d) + &[VkMk]qu) - VkV,q)M,k

+V VM, -V, V.M;d — B(VkMkjmnVian
- MjkmndVian + VkanViM4kjmn

anVlViM4jlmn)] (B 10)

The elastic stress corresponding to the free energy Fy,, is
identified as

I Y R PR WY tw_wg);;MA)}

I{MVV O +VV: M@—diMVVCD VVM <ID

d
M4::VVM—;IMVV::M4)”. (B8)

£2
7., == (m X R(u")m) + [VOVD-DV VD]

C kTP
+

o —[V®V -M-VVd -M+VM,V,0

BCkTL2

- VaVleaq)] - 3—2[ViMk]Vijl - (VVM)M]

BCkTL?

R it
64

- Vian(VkM4,kjmn) - V/<M4,kjmnvian] .

[VinanM4,jkmn + (Vivk ' M4,kjmn)an

(B11)

For the approximate theory, we only need to derive the
stress corresponding to the interaction potential. The ap-
proximate form of the interaction potential is

L2
F)=kTx f(¢(X,f)+£VV¢:mm>dx )
Q

(B12)

The variation of the free energy with respect to f is
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L2
SFig) = kTXLf f <¢(x,t) +—V Vqﬁ:mm) Sf
0 Jjmf=1 24

12
+ <5¢+ ﬂév Vd):mm)fdmdx

L2
= —kTXf K,s(VV$-M+M-VVg

-2 V V¢:M4)aﬁ + Va¢ViMiB - ViVad)Mﬁi

12
= J Kaﬁ[— (m X Rp'm) 5+ akTX[Va(ﬁviMiﬁ
o

- ViVa¢MBi]:| ) (B13)

where

PHYSICAL REVIEW E 72, 041805 (2005)

L2
u? = (1 + ﬂmm:VV>qb. (B14)

The corresponding stress tensor is given by

L2
() ap=— (M X RulPm), 5+ 22KV 2 VMg

- Viva¢Mﬁi]
2

L
= LKTX(VV-M+M-VV6-2V VM,

+Va¢ViMiB_ViVa¢Mﬁi' (B15)
The first three terms belong to the terms derived from the
chemical potential and the last two terms are the extra terms
due to the spatial convection and spatial inhomogeneity.
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